

Environmental Stress Benefits

Acetoin	Secretes acetoin which triggers induced
BS, BA	systemic resistance (ISR), mediating stress

Cytokinin	Secretes cytokinin, a biochemical messenger
АВ	supporting plants under stress

Exopolysaccharides	Secretes EPS which forms a biofilm layer on
BS	roots mitigating damage from abiotic stress

Gibberellic Acid	Secretes GA which plays a central role in the
АВ	plant's response to abiotic stress

IAA	Secretes IAA, a common auxin that enables cell	
PP, AB	division and movement of photosynthates	

⊌ReNew[™]

(CANGROW

PAL	Secretes PAL, a key enzyme that supports
BS, BA	systemic resistance against abiotic stress

Microbial Species	Abbreviation	Microbial Species	Abbreviation
Azospirillum brasilense	АВ	Cellulomonas cellasea	СС
Bacillus amyloliquefaciens	BA	Pseudomonas fluorescens	PF
Bacillus subtilis	BS	Pseudomonas patida	PP

Location:

CanGrow Crop Solutions 3971 Old Walnut Rd. Alvinston, ON, NON1A0

Contact Us:

www.cangrow.com solutions@cangrow.com 519-847-5748

		F	Plai	nt Nutrition Benefits
/	/	Phosphorus BS, BA, AB, PF		Able to solubilize and make plant available insoluble forms of phosphate
	Nit	trogen	•	pable of fixing atmospheric nitrogen (N ₂) into logically useable and available ammonia
	_	Potassium PP		Able to solubilize insoluble forms of potassium
	Zinc Ab		Abl	e to solubilize insoluble forms of zinc
_	_	Sulfur BS		Able to convert (oxidize) insoluble sulfur into plant available sulfates
\	Iro BS,	n AB, PF		e to convert insoluble forms of iron into n-chelating siderophore compounds
	Biodegradation Benefits			
	\	Amylase BS, BA		Secretes amylase, an enzyme that hydrolyzes starch and breaks it down into smaller sugars
\		llulase BA, CC	4	cretes cellulase, an enzyme that breaks down lulose into its monosaccharide units

Cellulase	Secretes cellulase, an enzyme that breaks down
BS, BA, CC	cellulose into its monosaccharide units

\	Glucanase	Secretes glucanase, an enzyme that breaks
	BS, BA	down large polysaccharides like glucans

Laccase	An enzyme that biodegrades lignin and can
BS, BA	oxidize and degrade aromatic pollutants

Lipase	Secretes lipase to help support the break down
BS	of fats, oils, and lipids

Protease	Secretes protease, an enzymes that break
BS, BA	down proteins down into amino acids

Urease	Secretes urease, enzyme capable of breaking
ВА	down urea into ammonia and CO ₂

Xylanase Secretes xylanase, an enzyme that breaks down hemicellulose in plant cell walls BS, BA

ReNew™ - Biological Fertilizer & Stimulant

Stronger Plants, Stronger Profits

ReNew[™] offers a diverse team of microbes that are not genetically modified, non-pathogenic, and 100% naturally occurring. ReNew[™] helps promote the fundamental relationship between the plant and soil to ensure efficiency and maximize the plant's ability to grow.

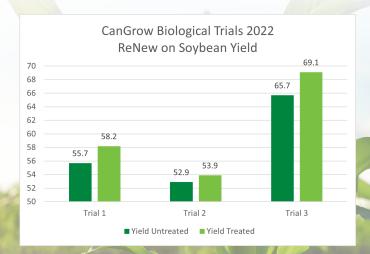
ReNew[™] provides a team of beneficial microbes that improve nutrient availability and increased abiotic stress tolerance for plants. ReNew[™] is easy to use, just add to water or liquid starter in-furrow.

These microbes support:

- Nitrogen fixing
- Phosphorus solubilization
- Sulfur, Zinc, Iron, and other nutrient increased availability
- Production of environmental stress reducing factors such as EPS and PAL
- Production of biodegradable enzymes such as cellulase, laccase, urease, and xylanase

Application Rate

In-Furrow or 2x2: 470 mL (16 oz) per acre


2022 Ontario Field Trials

Multiple trials were completed within Ontario during the 2022 growing season with ReNew™. 3 different crops were studied, and each resulted in positive yield increases and return on investment.

Soybean trials resulted in an average yield increase of 2.3 bushels/acre and an average return of investment (ROI) of \$29.40/acre.

Corn trials resulted in an average yield increase of 3.0 bushels/acre.

Potato trials resulted in an average yield increase of 17.0 hundredweight (cwt).

Location:

CanGrow Crop Solutions 3971 Old Walnut Rd. Alvinston, ON, NON1A0

Contact Us:

www.cangrow.com solutions@cangrow.com 519-847-5748