

Environmental Stress Benefits

Acetoin	Secretes acetoin which triggers induced
BS, BA	systemic resistance (ISR), mediating stress

Cytokinin	Secretes cytokinin, a biochemical messenger
AB	supporting plants under stress

Exopolysaccharides	Secretes EPS which forms a biofilm layer on
BS	roots mitigating damage from abiotic stress

Gibberellic Acid	Secretes GA which plays a central role in the
АВ	plant's response to abiotic stress

IAA	Secretes IAA, a common auxin that enables cell
PP, AB	division and movement of photosynthates

CanGrow ReNew™

CANGROW

PAL	Secretes PAL, a key enzyme that supports
BS, BA	systemic resistance against abiotic stress

Microbial Species	Abbreviation	Microbial Species	Abbreviation
Azospirillum brasilense	АВ	Cellulomonas cellasea	СС
Bacillus amyloliquefaciens	ВА	Pseudomonas fluorescens	PF
Bacillus subtilis	BS	Pseudomonas patida	PP

www.cangrow.com I 519-847-5748

Plant Nutrition Ranofits

Plant Nutrition Benefits				
	Phosphorus BS, BA, AB, PF		Able to solubilize and make plant available insoluble forms of phosphate	
Ni ^a	trogen		pable of fixing atmospheric nitrogen (N ₂) into logically useable and available ammonia	
	Potassium		Able to solubilize insoluble forms of potassium	
Zi r	nc	Abl	e to solubilize insoluble forms of zinc	
_	Sulfur BS		Able to convert (oxidize) insoluble sulfur into plant available sulfates	
Iro BS,	On . AB, PF		e to convert insoluble forms of iron into n-chelating siderophore compounds	
_	E	Bio	degradation Benefits	
	Ala a a			

	Amylase		Secretes amylase, an enzyme that hydrolyzes
	BS, BA		starch and breaks it down into smaller sugars
		,	
Cel	llulase	Sec	cretes cellulase, an enzyme that breaks down

Secretes cellulase, an enzyme that breaks down

down large polysaccharides like glucans

BS,	BA, CC	cellulose into its monosaccharide units	
	Glucanase		Secretes glucanase, an enzyme that breaks

Laccase	An enzyme that biodegrades lignin and can
BS. BA	oxidize and degrade aromatic pollutants

BS, BA

Lipase	Secretes lipase to help support the break down
BS	of fats, oils, and lipids

Protease	Secretes protease, an enzymes that break
BS, BA	down proteins down into amino acids

	Secretes urease, enzyme capable of breaking
ВА	down urea into ammonia and CO ₂

Xylanase Secretes xylanase, an enzyme that breaks down hemicellulose in plant cell walls BS, BA

CanGrow ReNew™ - Biological Fertilizer & Stimulant

Stronger Plants, Stronger Profits

CanGrow ReNew[™] offers a diverse team of microbes that are not genetically modified, non-pathogenic, and 100% naturally occurring. CanGrow ReNew[™] helps promote the fundamental relationship between the plant and soil to ensure efficiency and maximize the plant's ability to grow.

CanGrow ReNew[™] provides a team of beneficial microbes that improve nutrient availability and increased abiotic stress tolerance for plants.

CanGrow ReNew[™] is easy to use, just add to water or liquid starter in-furrow.

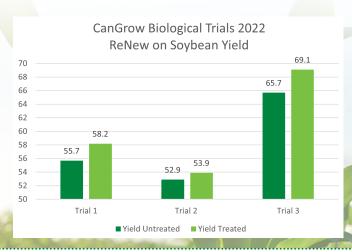
These microbes support:

- Nitrogen fixing
- Phosphorus solubilization
- Sulfur, Zinc, Iron, and other nutrient increased availability
- Production of environmental stress reducing factors such as EPS and PAL
- Production of biodegradable enzymes such as cellulase, laccase, and urease

Control

Treated with **BRENEU**™

Application Rate


In-Furrow or 2x2: 470 mL (16 oz) per acre

2022 Ontario Field Trials

Soybean trials resulted in an average yield increase of 2.3 bushels/acre and an average return of investment (ROI) of \$29.40/acre.

Corn trials resulted in an average yield increase of 3.0 bushels/acre.

Potato trials resulted in an average yield increase of 17.0 hundredweight (cwt).

