

Environmental Stress Benefits

	Support abiotic stress tolerance by degrading	
BL	ACC, a precursor to ethylene formation	

	Secretes acetoin which triggers induced
BA	systemic resistance (ISR), mediating stress

Auxin	Critical for cell division, plant growth and
BL	enhances plant's tolerance to abiotic stress

Catalase	An antioxidant enzyme that protects plant
BL	cells from abiotic stress damage

Cytokinin	Secretes cytokinin, a biochemical messenger
AB	supporting plants under stress

Secretes EPS which forms a biofilm layer on Exopolysaccharides roots mitigating damage from abiotic stress

	Secretes GA which plays a central role in the
АВ	plant's response to abiotic stress

	Secretes IAA, a common auxin that enables cell division and movement of photosynthates
PP AB	

	Secretes PAL, a key enzyme that supports systemic resistance against abiotic stress
ВА	

Microbial Species	Abbreviation	Microbial Species	Abbreviation
Azospirillum brasilense	АВ	Bacillus licheniformis	BL
Bacillus amyloliquefaciens	BA	Pseudomonas patida	PP

Plant Nutrition Benefits

	Phosphorus		Able to solubilize and make plant available
	BA, AB		insoluble forms of phosphate
Nitrogon (N.)		sable of fixing atmospheric nitrogen (N.) into	

	Millogen	capable of thing attriospheric that open (112) into
1	AB,	biologically useable and available ammonia

Potassium	Able to solubilize insoluble forms of potassium
PP	

-	Able to convert insoluble forms of iron into
BS, AB	iron-chelating siderophore compounds

Biodegradation Benefits

\	,	Secretes amylase, an enzyme that hydrolyzes
	BA, BL	starch and breaks it down into smaller sugars

		Secretes cellulase, an enzyme that breaks down
1	ВА	cellulose into its monosaccharide units

٦		Secretes chitinase, an enzyme that biodegrades
	ВА	the cell walls of fungi that is rich in chitin

	Secretes glucanase, an enzyme that breaks
ВА	down large polysaccharides like glucans

\		An enzyme that biodegrades lignin and can
	BA	oxidize and degrade aromatic pollutants

	Protease	Secretes protease, an enzymes that break
1	RA RI	down proteins down into amino acids

	Urease	Secretes urease, enzyme capable of breaking
1	BA	down urea into ammonia and CO ₂

,	Secretes xylanase, an enzyme that breaks down
ВА	hemicellulose in plant cell walls

www.cangrow.com I 519-847-5748

CanGrow ReSTore® - Biological Seed Treatment

A Strong Start for Strong Plants

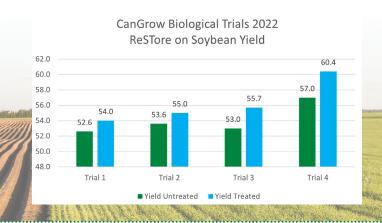
CanGrow ReSTore® offers many benefits to help provide a quick germination process and quality stand rate. As the seedlings grow, CanGrow ReStore® continues to embrace the fundamental relationship between the plants and soil. The microbes feed off of the sugars that are given off by the young seedlings which helps promote a healthy and vigorous plant.

The addition of CanGrow ReSTore® can result in up to a 30% reduction of commercial P needed. Several strains can also reduce surface tension to free up more organic and inorganic nutrients to make them available to the entire microbial population.

These microbes support:

- Nitrogen fixing
- Phosphorus solubilization
- Potassium, Iron and other nutrient increased availability
- Production of environmental stress reducing factors such as catalase, EPS, and PAL
- Production of biodegradable enzymes

Application Rate


Seed Treatment: 44 - 60 mL (1.5 - 2 oz) per 50 lbs of seed

2022 Ontario Field Trials

Soybean seeds treated with CanGrow ReSTore® showed an average increase of yield by 2.2 bushels/acre, resulting in an average return of investment (ROI) of \$35.05/acre.

The treated plants also showed:

- Bigger root systems
- Earlier nodulation
- More prolific nodulation

