

Environmental Stress Benefits

	Support abiotic stress tolerance by degrading
BL	ACC, a precursor to ethylene formation

Acetoin	Secretes acetoin which triggers induced
BS, BA	systemic resistance (ISR), mediating stress

Auxin	Critical for cell division, plant growth and
BL	enhance plant's tolerance to abiotic stress

	Catalase	An antioxidant enzyme that protects plant
Ī	BL	cells from abiotic stress damage

Cytokinin	Secretes cytokinin, a biochemical messenger
AB	supporting plants under stress

	Secretes EPS which forms a biofilm layer on
BS, BL	roots mitigating damage from abiotic stress

Gibberellic Acid	Secretes GA which plays a central role in the
АВ	plant's response to abiotic stress

IAA	Secretes IAA, a common auxin that enables cell
PP, RP, AB	division and movement of photosynthates

PAL	Secretes PAL, a key enzyme that supports
BS, BA	systemic resistance against abiotic stress

Microbial Species	Abbreviation	Microbial Species	Abbreviation
Azospirillum brasilense	AB	Cellulomonas cellasea	СС
Bacillus amyloliquefaciens	ВА	Pseudomonas fluorescens	PF
Bacillus licheniformis	BL	Pseudomonas patida	PP
Bacillus subtilis	BS	Rhodopseudomonas palustris	RP

www.cangrow.com I 519-847-5748

Plant Nutrition Benefits

		Phosphorus		Able to solubilize and make plant available insoluble forms of phosphate	
	BS, BA, AB, RP, PF				
/				pable of fixing atmospheric nitrogen (N ₂) into logically useable and available ammonia	
		Potassium PP		Able to solubilize insoluble forms of potassium	
	Zin	c	Abl	e to solubilize insoluble forms of zinc	
	PF				
_		Sulfur		Able to convert (oxidize) insoluble sulfur into	

	BS		plant available sulfates
Iron Ab		Ab	e to convert insoluble forms of iron into
1	BS, AB, PF	iro	n-chelating siderophore compounds

Biodegradation Benefits

\		Secretes amylase, an enzyme that hydrolyzes
	BS, BA, BL	starch and breaks it down into smaller sugars

Cellulase	Secretes cellulase, an enzyme that breaks down
BS, BA, CC	cellulose into its monosaccharide units

CANGROW

Glucanase	Secretes glucanase, an enzyme that breaks
BS, BA	down large polysaccharides like glucans

Laccase	An enzyme that biodegrades lignin and can
BS, BA	oxidize and degrade aromatic pollutants

Lipase	Secretes lipase to help support the break down
BS, RP	of fats, oils, and lipids

Protease	Secretes protease, an enzymes that break
BS, BA, BL	down proteins down into amino acids

Urease	Secretes urease, enzyme capable of breaking
ВА	down urea into ammonia and CO ₂

Xylanase Secretes xylanase, an enzyme that breaks down hemicellulose in plant cell walls

CanGrow UnLeash® - Biological Fertilizer & Residue Manager/Recycler

Provide Maximum Biological Activity

CanGrow UnLeash® provides the best biofertility and residue manager all in one on the market. CanGrow UnLeash® offers the convenience of applying with an existing herbicide or fungicide pass and is compatible with most products.

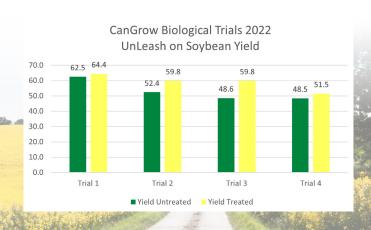
The soil penetrating technologies provide sustained biostimulant capabilities and release carbon that feeds the entire microbial population. The diversity and amount of soil microbes you have correlates to the performance of your soil and your crop.

These microbes support:

- Nitrogen fixing
- Phosphorus solubilization
- Sulfur, Zinc, Iron, and other nutrient increased availability
- Production of environmental stress reducing factors such as catalase, EPS, and PAL
- Production of biodegradable enzymes such as cellulase, laccase, urease, and xylanase

Application Rates

Broadcast Application: 1 L (34 oz) per acre


Side Band: 1 L (34 oz) per acre

 $Can Grow\, Un Leash^{\tiny{\circledR}}\, can\, be\, soil\, applied\, and\, added$

with crop protection products.

2022 Ontario Field Trials

Multiple trials were conducted within Ontario on soybeans with CanGrow UnLeash®. These trials consisted of 4 different growers on 12 different farms. The trials resulted in an average yield increase of 2.1 bushels/acre and an average return of investment (ROI) of \$19.42/acre.

#BetterBiology

