

Environmental Stress Benefits

Acetoin	Secretes acetoin which triggers induced
BS, BA	systemic resistance (ISR), mediating stress

Cytokinin	Secretes cytokinin, a biochemical messenger
АВ	supporting plants under stress

Exopolysaccharides	Secretes EPS which forms a biofilm layer on	
BS	roots mitigating damage from abiotic stress	

Gibberellic Acid	Secretes GA which plays a central role in the
АВ	plant's response to abiotic stress

IAA	Secretes IAA, a common auxin that enables cell
PP, AB	division and movement of photosynthates

CanGrow ReNew™

PAL	Secretes PAL, a key enzyme that supports
BS, BA	systemic resistance against abiotic stress

Microbial Species	Abbreviation	Microbial Species	Abbreviation
Azospirillum brasilense	АВ	Cellulomonas cellasea	СС
Bacillus amyloliquefaciens	ВА	Pseudomonas fluorescens	PF
Bacillus subtilis	BS	Pseudomonas patida	PP

Certified organic.

www.cangrow.com I 519-847-5748

Plant Nutrition Benefits

,				Able to solubilize and make plant available insoluble forms of phosphate	
			1 '	pable of fixing atmospheric nitrogen (N ₂) into logically useable and available ammonia	
_	Potassium PP			Able to solubilize insoluble forms of potassium	
	Zinc A		Abl	e to solubilize insoluble forms of zinc	
_	Sulfur BS			Able to convert (oxidize) insoluble sulfur into plant available sulfates	
	Iron Ab		Abl	e to convert insoluble forms of iron into	

Biodegradation Benefits

iron-chelating siderophore compounds

Secretes glucanase, an enzyme that breaks down large polysaccharides like glucans

	Amylase		Secretes amylase, an enzyme that hydrolyzes starch and breaks it down into smaller sugars	
	BS, BA			
Cellulase Sec		Sec	retes cellulase, an enzyme that hreaks down	

BS, AB, PF

Glucanase

BS, BA

CANGROW

BS, BA, CC	cellulose into its monosaccharide units
	secretes celidiase, all elizyllie tilat breaks dowll

20, 27 (
Laccase	An enzyme that biodegrades lignin and can		gnin and can	

Lipase	Secretes lipase to help support the break down	
BS	of fats, oils, and lipids	

oxidize and degrade aromatic pollutants

Protease	Secretes protease, an enzymes that break
BS, BA	down proteins down into amino acids

Urease	Secretes urease, enzyme capable of breaking
ВА	down urea into ammonia and CO ₂

Xylanase	Secretes xylanase, an enzyme that breaks down
BS, BA	hemicellulose in plant cell walls

CanGrow ReNew™ - Biological Fertilizer & Stimulant

Stronger Plants, Stronger Profits

CanGrow ReNew™ offers a diverse team of microbes that are not genetically modified, non-pathogenic, and 100% naturally occurring. CanGrow ReNew™ helps promote the fundamental relationship between the plant and soil to ensure efficiency and maximize the plant's ability to grow.

CanGrow ReNew[™] provides a team of beneficial microbes that improve nutrient availability and increased abiotic stress tolerance for plants.

CanGrow ReNew[™] is easy to use, just add to water or liquid starter in-furrow.

These microbes support:

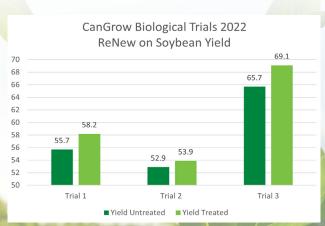
- Nitrogen fixing
- Phosphorus solubilization
- Sulfur, Zinc, Iron, and other nutrient increased availability
- Production of environmental stress reducing factors such as EPS and PAL
- Production of biodegradable enzymes such as cellulase, laccase, and urease

Control

Treated with **BRENEU**™

Application Rate

In-Furrow: 330 mL (12 oz) per acre


2x2/Side-Dress/Foliar: 500 mL (17 oz) per acre

2022 Ontario Field Trials

Soybean trials resulted in an average yield increase of 2.3 bushels/acre and an average return of investment (ROI) of \$29.40/acre.

Corn trials resulted in an average yield increase of 3.0 bushels/acre.

Potato trials resulted in an average yield increase of 17.0 hundredweight (cwt).

